

Boil-Bal

Boiler Balance Calculations Version 2.0 for Excel

(c) 2006 **MARVIN SILBERT and ASSOCIATES** 23 Glenelia Avenue, Toronto, Ontario, Canada, M2M 2K6 Telephone: 1-416-225-0226 FAX: 1-416-225-2227 Internet: marvin@silbert.org **Boil-Bal** calculates the use and balance of water and energy within a boiler system. This latest version includes the ability to calculate the water and energy savings achievable by adding a flash tank and heat-exchanger to recover the residual heat present in the boiler blowdown. Boil-Bal works with US, metric or imperial units or any combination of them and any currency. Boil-Bal uses several very common calculations from the open literature, many of which are used by the various water-treatment suppliers and consultants. To fully interpret the results, it should be noted that actual conditions within a boiler may differ from those on which the calculations are based. The differences are most pronounced at start-up or when changing load. While the calculations have been shown to give a reasonable approximation in many applications, MS&A can assume no responsibility for any decision based upon the results of the calculations.

Boiler Mass Balance

The boiler cycle can be depicted as a simple loop. The figure shows both the water balance and the routes where contaminants are brought into or removed from the system. As steam is taken away from the boiler, the solids remain behind and concentrate. The total amount of solids in the boiler is dependent upon the quantity of solids brought in with the makeup or returned with the condensate. This quantity can be reduced, but not eliminated by external treatment. Two components of the mass balance in the boiler can be manipulated to limit the concentrating effect.

• **Blowdown:** A small flow of concentrated water is taken from the boiler to prevent overconcentration of solids. The makeup brings in fresh water. The balance between the two, results in a steady-state concentration. A higher blowdown rate results in a lower concentration of impurities, but also removes more energy. Lowering the blowdown rate reduces the energy penalty, but can not achieve as low a concentration of solids. Blowdown can be continuous or intermittent. Its control can be a simple manual valve, or highly automated with control based upon the signal from an on-line conductivity meter. Typically, blowdown rates are less than 1% in the electrical generation plants. They may go to 5% in industrial utilities where condensate is returned and much higher if it isn't. • **Condensate Recovery:** When the steam has done its work, it condenses back into a liquid. This condensate is pure water with essentially no solids. If it can be returned to the boiler, it eliminates the demand for makeup bringing new solids with it. In electrical generating stations more than 98% of the condensate is returned. In industrial plants, the percentage varies. It is not unusual to find systems where no condensate is returned. When it is returned, there is always a concern that returned condensate may include impurities from condenser leakage or hydrocarbons leaking from process heat exchangers. On-line monitors are available for detecting condenser leakage or hydrocarbons in water.

Blowdown losses and condensate recovery are the major effects that govern the overall behaviour of the system. Blowdown that is lost is also energy that is lost. Well designed systems may also contain a flash tank that recovers energy from the blowdown by routing the flashed steam back to the deaerator. Further energy recovery can be achieved by passing the hot liquid through heat exchangers to heat the incoming feedwater. Lost condensate must be replaced. The best way to do so it is bring it back. Plants with high rates of condensate recovery, also have low blowdown rates. This should be an incentive to designers as they can reduce the need for a blowdown energy recovery system if they use good quality make-up and a high condensate recovery.

Performing a Mass Balance

If a solid component, e.g., phosphate is added to a boiler, it should stay in solution. The only mechanisms for its removal are deposition or blowdown. In a properly controlled system, there should be no deposition and a mass balance should indicate that the mass of material added through pumps s balanced by the mast of material discharged through blowdown.

- The weight added through the pumps is usually calculated from the concentration in the day tank times the drawdown in the tank.
- The weight lost through blowdown is usually calculated from the measured concentration in the blowdown times the blowdown flowrate.

There is one problem. It's not common to include instrumentation to measure the blowdown flow due to the difficulties inherent with the two-phase flow that may occur in the line. The alternative is to calculate it from the routine analyses used to monitor the boiler's performance. Many plants assume some arbitrary flowrate based upon the number of turns on the valve, but that may not really mean anything. Calculations tend to be more reliable with boilers that operate with a measurable level of dissolved solids rather than those using ultrapure water.

As an example, data will be used from a typical industrial boiler supplied with softened make-up. 60,000 lb/hr of steam is supplied to heat a process. 20% of the steam (i.e. 12,000 lb/hr) is lost and the remaining 80% (i.e. 48,000 lb/hr) is returned as condensate. These flows are fixed by the systems design. A number of simple relationships become apparent from the mass balance:

FW	= MU + CR	Feedwater flow is the sum of makeup and condensate return.
FW	= BD + S	Feedwater flow is also the sum of blowdown and steam flow.
MU	= BD + L	Makeup replaces blowdown and losses
S	= CR + L	Steam produced is the sum of return and losses.

From these relationships, the following information can be derived and will cover essentially all the calculations necessary to cover a boiler mass balance calculation.

Cycles of concentration can be evaluated relative to either feedwater or makeup concentration. A subscript indicates which. The most common species is chloride as it tends to be easily measured and remains in solution in the boiler at operating temperatures. In order to make the necessary calculations, it is necessary to measure chlorides in the makeup, feedwater, blowdown (i.e. in the boiler) and returns (i.e. in the condensate).

$$\operatorname{COC}_{MU} = \frac{\operatorname{Cl}_{BD}}{\operatorname{Cl}_{MU}}$$
 and $\operatorname{COC}_{FW} = \frac{\operatorname{Cl}_{BD}}{\operatorname{Cl}_{FW}}$ where: $\frac{\operatorname{COC}_{MU}}{\operatorname{COC}_{FW}} \times 100 = \% \operatorname{MU}$

The percentage of Condensate Returns (CR) can then be determined from the four chloride values: $% CR = 100 \times \frac{Cl_{MU} - Cl_{FW}}{Cl_{MU} - Cl_{CR}}$

A few additional variations of the above equations relate:

MAKEUP to condensate returns:	%MU	=	100 - %CR
BLOWDOWN to feedwater flow and steaming rate:	BD	=	FW - S
FEEDWATER to steaming rate and blowdown:	FW	=	$\frac{100 \times S}{100 - \% BD}$
LOSSES to makeup and blowdown:	L	=	MU - BD

The calculation¹ is based upon measured levels of chloride in the boiler. Taking as an example a boiler fed by softened water. The measured chloride values through the system are:

$$Cl_{MU} = 30$$
, $Cl_{FW} = 6.5$, $Cl_{BD} = 300$, $Cl_{CR} = 0.1$

From this the cycles of concentration can be calculated:

$$\text{COC}_{\text{FW}} = \frac{300}{6.5} = 46.2$$
 and $\text{COC}_{\text{MU}} = \frac{300}{30} = 10$

along with the percentages of the various streams:

$$%CR = 100 \times \frac{30 - 6.5}{30 - 0.1} = 78.6\%$$

$$\%$$
MU = 100 - $\%$ CR = 100 - 78.6 = 21.4%

$$%BD = \frac{\%MU}{COC_{MU}} = \frac{21.4}{10.0} = 2.14\%$$

$$\%L = \%MU - \%BD = 21.4 - 2.14 = 19.3\%$$

¹ The percentages and flows are presented to three significant figures.

The individual flows for a 60,000 lb/hr steaming rate can be calculated from the percentages:

FW =	$\frac{S \times 100}{100 - \%BD}$	$= \frac{60,000 \text{ lb/hr} \times 100}{100 - 2.14}$	= 61,300 lb/hr
MU=	$\%$ MU \times FW	= 21.4% × 61,300	= 13,100
BD =	$\%BD \times FW$	= 2.14% × 61,300	= 1,310
CR =	$%$ CR \times FW	= 78.6% × 61,300	= 48,200
L =	$\%L \times FW$	= 19.3% × 61,300	= 11,800

If more condensate could be recovered, it would result in less blowdown and need less make-up.

Blowdown Energy Recovery

While blowdown can minimize the overconcentration of impurities in a boiler, it is common to find plants skimping on blowdown flow. The reason is that it contains energy and that is going to be lost unless a recovery system is installed. The boiler used as an example in Section 1 can also serve to demonstrate the calculations. For the sample calculations that follow, the following operating parameters will be used:

<u>_</u>	IS/Imperial units <u>SI r</u>	<u>netric units</u>
steam is produced at a pressure \overline{o}	f 100 psig/114	.7 psia 791 kPa
steam production is	60,000 lb/hr	7.56 kg/s
	1.44 ×10° lb/	day 6.5×10 ⁶ kg/day
the blowdown rate is 2.17%	3.1×10^4 lb/c	ay 1.4 ×10 ⁴ kg/day
the make-up water temperature is	60°F	15.6°C
the fuel cost is	\$7.40/10 ⁶ B7	⁻ U \$7.00/GJ
the boiler efficiency is		70%

The thermodynamic data has been taken from a standard set of steam tables. It should be noted that the tables are based upon absolute pressure and that the 100 psig will be found by looking up 114.7 psia. The symbol conventions used in the following calculation are:

H _{f-P/T}	Enthalpy of liquid water for the specified pres	sure/temperature
H_{fg-T}	Latent heat of evaporation for the specified pr	essure or temperature
Energy lost	= blowdown flow \times [enthalpy of boiler water	- enthalpy of make-up]
	= blowdown flow \times [H _{f-boiler pressure} - H _{f-make-up te}	emperature]
US/Imp	$= 3.1 \times 10^4 \text{ lb/day} \times [\text{H}_{\text{f-114.7 psia}} - \text{H}_{\text{f-60°F}}]$	
_	$= 3.1 \times 10^4 \text{ lb/day} \times (309 - 28) \text{ BTU/lb}$	$= 8.8 \times 10^6 \text{ BTU/day}$
SI units	$= 1.4 \times 10^4 \text{ kg/day} \times [\text{H}_{\text{f-791 kPa}} - \text{H}_{\text{f-15.6°C}}]$	
	$= 1.4 \times 10^4 \text{ kg/day} \times (718 - 65) \text{ kJ/kg}$	= 9.3 GJ/day

Energy cost	= Energy lost \times energy cost \times (100 \div efficiency)	
US/Imp	$= 8.8 \times 10^{6} \text{ BTU/day} \times \$7.40/10^{6} \text{ BTU} \times (100 \div 70)$	= \$93/day
SI units	$= 9.3 \text{ GJ/day} \times \$7.00/\text{GJ} \times (100 \div 70)$	= \$93/day

A well designed recovery system would include two components to recover energy. While either or both can be used, the best recovery will be achieved from applying both.

Flash Tank: The first stage to recover energy from the blowdown is to have the high-pressure water flash to steam that can be fed back into the process, usually into the deaerator. Assume the deaerator is operated at 239°F. The first stage is to measure the percentage of the blowdown that is flashed to steam and use this to calculate the energy that can be recovered.

% flashed steam=
$$100 \frac{\text{Enthalpy of water in boiler - Enthalpy of water at deaerator outlet}}{\text{Latent heat of evaporation at deaerator outlet}}$$

US/Imp = $100 \frac{\text{H}_{f-114.7 \text{ psi}} - \text{H}_{f-239^{\circ}\text{F}}}{\text{H}_{fg-239^{\circ}\text{F}}} = 100 \frac{(308-209) \text{ BTU/lb}}{953 \text{ BTU/lb}} = 10.4\% \text{ or } 0.104$
SI metric = $100 \frac{\text{H}_{f-791 \text{ kPa}} - \text{H}_{f-115^{\circ}\text{C}}}{\text{H}_{fg-115^{\circ}\text{C}}} = 100 \frac{(718-482) \text{ kJ/kg}}{2216 \text{ kJ/kg}} = 10.4\% \text{ or } 0.104$

Once the percentage that flashes to steam is known, it is possible to calculate the energy that can be recovered by feeding that flashed steam back into the process.

Energy recovered	= blowdown flow \times % flashed steam \times [H _{g-flashed steam} - H _{f-make-up}]							
US/Imp	$= 3.1 \times 10^4 \text{ lb/day} \times 10.4\% \times [\text{H}_{\text{g}-239^\circ\text{F}} - \text{H}_{\text{f}-60^\circ\text{F}}]$							
	= 3.1×10^4 lb/day $\times 0.10^4 \times (1160 - 28)$ BTU/lb = 3.6×10^4	10 ⁶ BTU/day						
SI metric	$= 1.4 \times 10^4 \text{ kg/day} \times 10.4\% \times [\text{H}_{\text{g-115}^{\circ}\text{C}} - \text{H}_{\text{f-15.6}^{\circ}\text{C}}]$							
	$= 1.4 \times 10^4 \text{ kg/day} \times 0.10^4 \times (2699 - 65) \text{ kJ/kg} = 3.9 \text{ C}$	GJ/day						
Energy cost	= Energy lost \times energy cost \times (100 ÷ efficiency)							
US/Imp	$= 3.6 \times 10^{6} \text{ BTU/day} \times \$7.40/10^{6} \text{ BTU} \times (100 \div 70)$	= \$39/day						
SI metric	$= 3.9 \text{ GJ/day} \times \$7.00/\text{GJ} \times (100 \div 70) = \$39/$							

Heat Exchanger: This water is still hot and some additional savings can be achieved by passing it through a heat exchanger to boost the temperature of the incoming makeup or feedwater. If the temperature can be reduced to 90°F the additional energy recovered will be:

Energy recovered	= blowdown flow × [1 - flashed steam] × [$H_{f-D/A \text{ outlet}}$ - $H_{f-HX \text{ outlet}}$]							
US/Imp	= $3.1 \times 10^4 \text{ lb/day} \times [1 - 0.104] \times [H_{f-239^\circ F} - H_{f-90^\circ F}]$							
	= 3.1×10^4 lb/day $\times 0.896 \times (208 - 58)$ BTU/lb = 4.2×10^6 BT	'U/day						
SI metric	$= 1.4 \times 10^4 \text{ kg/day} \times [1 - 0.104] \times [\text{H}_{\text{f-}115^{\circ}\text{C}} - \text{H}_{\text{f-}32^{\circ}\text{C}}]$							
	$= 1.4 \times 10^4 \text{ kg/day} \times 0.896 \times (482 - 134) \text{ kJ/kg} = 4.4 \text{ GJ/day}$							
Energy cost	= Energy lost \times energy cost \times (100 ÷ efficiency)							
US/Imp	$= 4.2 \times 10^{6} \text{ BTU/day} \times \$7.40/10^{6} \text{ BTU} \times (100 \div 70) = \44	/day						
SI metric	$= 4.4 \text{ GJ/day} \times \$7.00/\text{GJ} \times (100 \div 70) = \44	/day						

Notes on the operation of Boil-Bal

Boil-Bal is an Excel spreadsheet. It can be loaded as any other spreadsheet. There are no macros. It's operation is almost self-explanatory. To avoid errors, enter information only into the cells marked in yellow. The entered data will be indicated by their blue colour.

Worksheet	Notes
C-tower	Introduction to Boil-Bal with some operational notes
Setup	This worksheet sets up the units to be used for all the calculations. The appropriate values will display when the units are selected
Input	Enter the plant and system identification and the water and product information. This information will be used for identifying the system in the subsequent worksheets. If you do not want a title or note to appear, enter a blank. When multiple units are offered, enter only one steam flow and/or pressure. Boil-Bal will convert as needed.
Water	This sheet calculates the water consumption and costs. Enter the raw-water cost and treated-water costs in the appropriate units. Boil-Bal will convert as needed. If the cost for treated water includes the raw water cost leave the raw water cost blank. If the water is not treated, leave the treated-water cost blank. Most treatment processes have a waste stream. Estimate the percentage that goes to waster. With RO, it could be 30-50%. If treated water is purchased at a fixed cost, the percentage that goes to waster will likely be 0%.
Water Balance Flowsheet	This page gives a flowsheet with the water balance shown for the various streams.
Energy	This sheet calculates the energy consumption and costs. Enter either metric or non- metric units in the appropriate units, but not both. Boil-Bal will convert as needed. The various calculated values are shown in both units in the lower table. The steam table values are approximated from a curve fit. The fits is within ± 1 C° or $\pm 1\%$ of the enthalpy for most of the range.
Energy Balance Flowsheet	This page gives a flowsheet with both the energy and the water balance shown for the various streams.
Treatment Worksheet	Due to the large variety of chemical-treatment programs available for different boilers designs and operating pressures, there is no generalized calculation that fits all. The table is offered only as a means to help the users estimate costs for their system. There is no implied intent that the end result is either complete or accurate.

This is an Excel spreadsheet. Additional worksheets can be added and customized to the user's application. It is recommended that the existing structure be left intact and that individual values be accessed by the formula "=existing cell" rather than doing any cutting and pasting. It is also recommended that such customizing be done with a copy of the original.

Technical Support

FAQs

This section is a summary of questions that have popped up over the years. Users are encouraged to supply additional questions as the user is the one with the questions. The developer tends to see things in their sleep and can miss some critical points.

1. **My load cycles from low to high output over the day. How does Boil-Bal handle that?** The chloride measurements that form the basis of the calculation are usually taken at a fixed

time during the day. The calculations will be based upon the load at that time. To get the bigger picture, a program should be undertaken to do the testing under various load conditions and develop some form of average condition.

2. Is there a way to do an accurate measurement of the blowdown rate?

The best way to do this is to run the blowdown through a cooler of some type and measure the liquid flowrate. Ideas to do this have utilized sending the blowdown through a copper tube. Bend the tube into a tight coiled and put it into a pail through which cold water is run continuously. Various jury-rigged systems can be established based upon the ideas and materials at hand.

3. I found that more than 30% of my steam as lost. Is that real?

Very likely. Unless you can measure or calculate it, you don't know how much is lost.

- 4. I use softened water. What would I gain by switching to demineralized water? Would adding a demineralizer be cost effective as opposed to adding a heat recovery system? Try reducing the chloride values for the make-up and feedwater. This will allow you to simulate the changes. The blowdown rate will go way down.
- 5. Would adding a demineralizer to replace the softener be cost effective as opposed to adding a heat recovery system?

Try simulating the conditions for adding the heat recovery and also for adding the demineralizer. It's now a decision with respect to the engineering costs associated with both.

6. Would it be a good idea to recover some of that last condensate?

Definitely. The make-up requirements would be lower. Try reducing the chloride number on the feedwater. This will allow you to simulate the changes.

7. You may contact us at the following addresses:

Mail:	Marvin Silbert and Associates
	23 Glenelia Avenue, Toronto, Ontario, Canada, M2M 2K6
Telephone:	1-416-225-0226
Fax:	1-416-225-2227
E-mail:	marvin@silbert.org
WWW:	http://www.silbert.org

	A B	C	D	E	F	G	Н	I	J	K	L	MN
1				Во	il-Ba	a						
3	BO	<u>) L</u> er - <u>B</u>	<u>AL</u> ance	calculat	tions, ve	ersion 2.	0 for Ex	cel, (C)	2006			
4		Dovolor	and by:		UI RERT a							
6		Develop	Jeu by.									
7	Boil-Bal use	s a number	of standard	d calculation	ns readily a	vailable fron	n the literat	ure. To fully	/ interpret tl	he results, i	t should be	
	recognized the wind speed	nat actual co and humidit	nditions with ty. Although	nin a cooling the calcula	tower may ations do gi	differ from th ve a reason alculations	nose on whic nable avera	the calculation of the calculati	ations are ba year, the	ased due to a author can	actors such assume no	,
8	responsionity											
10	This copy lice	nsed to:	Enter Use	r's Name h	ere		ľ					
11			Enter Use	r's Affiliati	on nere							+
13	Note: The lice	nse prohibits	making copie	s other than f	or backup pu	rposes or ope	erating on mo	re than one c	omputer at an	ny given time.		
14												
15 16	Instructions											+
10	General	To ensure th	at data is ente	ered into the	correct locatio	ons, those cel	Is into which	data entries a	re made are	identified by tl	neir yellow	
17		colour. The edisabled, be	entries into the careful not to	ose cells are i make any er	identified with tries into cell:	blue text. Pros with formula	otection in ena ae in them.	abled, but no	password is I	needed to dis	able it. If it is	
18												
19	Setup	This tab sets	up the units	to be used for	r all the calcu	ations. The a	ppropriate va	lues will displ	ay when the u	units are seled	sted.	
20	Input	Enter the pla	ant and syste	em identificati	on and the w	ater and pro	duct informat	ion. This info	ormation will	be used for it	dentifying the	, — —
21		system in the	e subsequent	worksheets.						1		
23		The titles go into If you do not wa	o the cells marked nt a title or note t	d in yellow. Their o appear, enter a	length is limited a blank	by the length of t	he boxes where t	the information is	used.			
24		Enter only one s	team flow and/or	pressure. Boil-B	al will convert as	needed.						
26		To get a limited	idea of what mig	ht change if:	Make these cha	nges						
27		a. the make-up go the other	quality is improve way if it deteriora	ed ites	Reduce tracer in	n make-up.	Simple RO shou Full demineraliz	uld reduce CI to 0 ation with polishe	0.1-0.5 ppm er should be <0.0	1 ppm		+
29					Reduce tracer in	feedwater.	Drop until the ca	alculated losses a	are the same.			
31							Reduce il you w		solids			
32		 b. More/less co 	ndensate can be	recovered	Adjust tracer in	eedwater.	Select value cor	responding to the	e amount recove	red		
34 35		 c. boiler quality Note that balance 	is improved ce calculation is b	ased upon provi	Adjust tracer in ding a fixed stear	blowdown. nflow and this lin	nits the range that	t can be applied.	When making ch	anges, watch for		
36		systemflow limit	ation, e.g., being	required to supp	ly more make-up	than the water-ti	reatment plant ca	in supply or exce	eding the capacit	ty of the blowdow	n line.	
37	Water	This sheet ca	alculates the	water consum	ption and co	sts.						
39		Enter the raw-wa	ater cost and trea	ated-water costs	in the appropriate	e units. Boil-Bal v	vill convert as nee	eded.				
41		If the water is no	ot treated, leave t	he treated-water	cost blank	aw water cost dia	INK					
42		Most treatment If treated water i	processes have a is purchased at a	a waste stream. E fixed cost, the p	Estimate the perc ercentage that go	entage that goes bes to waster will	to waster. With I likely be 0%	RO, it could be 3	0-50%			+
44		This a f		at with at		have a sta						
45 46	vvaterBal-FS	i nis page gi	ves a flowshe	et with the wa	ater balance s	mown for the	various strea	ms.				$\left \right $
47	Energy	This sheet ca	alculates the	energy consu	mption and c	osts.	I	I	I	I	I	
48 49		Enter either met	ric or non-metric culated values are	units in the appro	opriate units, but units in the lower	not both. Boil-Ba table	l will convert as r	needed.				$+ \square$
50		The steam table	values are appre	oximated from a	curve fit. The fits	is within ±1 C° or	r ±1% of the enth	alpy for most of t	he range.			
52	EnergyBal-FS	This page give	ves a flowshe	et with both t	he energy an	d the water ba	alance shown	for the variou	us streams.			
53	Workspace	Due to the la	rae variety of	chomical-tro	atmont progra	me that are a	wailable for d	ifferent boiler	s designs and	h operating pr	ossuros thor	
54	workspace	is no general is no implied	lized calculati intent that the	on that fits all e end result is	. The table is s either comp	offered only a lete or accura	as a means to ite.	help the use	rs estimate co	osts for their s	ystem. There	1
55	Customized Worksheets	This is an Ex that the exist cutting and p	xcel spreadsh ting structure pasting. It is al	neet. Addition be left intact lso recommen	al worksheets and that indinded that suc	s can be adde vidual values h customizing	ed and set up be accessed be done with	in any manr by the formuna a copy of the	her the user o Ila "=existing e original.	lesires. It is re cell" rather th	ecommended an doing any	1 ,
56												
57						ATES						
50 59	For more info:		23 Gleneli	a Avenue	Toronto _	N. Canada	a. M2M 2K	6				
60			Tel: 1-416-	225- <u>02</u> 26,	FAX: 1-416	-225-2227	e-mail: SO	ftware@si	lbert.org			
61												

	A	В	С	D	Е	F	G	Н	I	J	K	L	Μ
1	-1			Deil Del	60	tun Dara	motoro	1					
2				Boll-Bal	56	t-up Para	meters	J					
4													
5		Flow units for plotting	g data on flo	wsheet				1	Energy unit	s auto-selec	ted by input		1
6													
7			1 - IG/day	1 - \$/day			1 - lb/hr						
8			2 - USG/day	2 - \$/yr			2 - Ib/day		Boiler Press	ure	100	psia	_
9			3 - m ³ /day				3 - kg/hr		Steam Temp	perature	327	°⊢	_
10			4 - IG/year				4 - kg/day		Dearator Ter	mperature:	239	°⊢	_
11			5 - USG/year	ſ			5 - kg/s		Heat-Exchar	nger Outlet:	90	°⊢ °⊏	_
12			6 - m ³ /year				6 - Ib/yr		Make-up ten	nperature	60	۳F	-
10		Calaat	4	2		Coloct	7 - kg/yr						-
14		Select >>>	4	2		Select >>>	3		EnorgyLos	505			-
16			IGhr	¢\/r				1	- With No Re		01/3		-
17	ļ	Make-un	IG/yi	ф/ут		Water Balan	<u></u>	-	- With Flash	Tank	5588		-
18		Raw Water	12914365	20663		Flows	ka/hr	1	- & Heat Exc	hander	1007		-
19		Treated Make-up	11229883	11230		Steam	27223		Energy Say	inas	1001		-
20		Total Make-up Cost		31893		Feedwater	29091		- With Flash	Tank	3555		-
21		Losses				Cond Return	21396		- & Heat Exc	hanger	4581		-
22		Treatment Losses	1684482	2695		Make-up	5827			Ŭ	8136		1
23		Blowdown	3368965	9568		Blowdown	1748						1
24		- Flashed Steam	312550	888		Losses	4079						1
25		- Discharged to Sewer	3056415	8680									
26		Condensate Lost	7860918	22325									
27													
28		Unite for colouistin m	ah amia al a ar										
29		Units for calculating	cnemical col	isumption									
30			1 ka										
20			1 - K <u>y</u>										

31		1 - кд	
32		2 - Ib	
33	Select >>>	1	
34			
35	Unit Price	\$/kg	
36	Daily Consumption	kg/day	
37	Annual Consumption	kg/yr	
38			
39			

	Α	В	C	D	Ē	F	G	Н	I				
1													
2		Boil-Bal Data Input Screen											
3													
4													
5			BOILER MASS-E	BALANCE C	ALCULATIONS								
6													
7			Plant:	XYZ Manufa	cturing								
8			System:	#2 Utility boi	ler								
9			Note 1:	Operating w	ith softened water								
10			Note 2:	Phosphate-k	based treatment								
11			Note 3:	Standard op	eration								
12			Note 4:	Operating 24	4/7								
13	l								ļ				
14													
10	Γ			CTION:									
17			STEAM FRODU	STICIN.									
18				60000	lb/br	60000	lb/br						
19				00000	lb/day	1440000	lb/day						
20			Flow		ko/day	653180	ko/day						
21					kg/day	27223	kg/day						
22					kg/m	7.56	kg/m						
23					Ng/0	1.00	119/0						
24					kPa	689.0	kPa						
25			Pressure		psig	85.3	psig						
26				100	psia	100.0	psia						
27													
28													
29			Temperature			164	°C						
30			-			327	°F						
31													
32			Operation	365	days/yr								
33													
34													
35													
36									-				
37			SOLUBLE TRAC	ER									
38													
39				ppm Cl	%	kg/hr	COC						
40			Make-up	30	21.4	5827	3.3						
41			Feedwater	6.5	106.9	29091	15.6						
42			Steam Flow		100.0	27223							
43			Boiler Blowdown	100	6.42	1748							
44			Cond. Return	0.1	78.6	21396							
45			Losses		15.0	4079							
46													
47													

	A B	С	D	E	F	G	Н	I	J
		Plant:	XYZ Manu	Ifacturing					
		System:	#2 Utility bo	oiler					
		Note 1:	Operating with	n softened wate	er				
		Note 2:	Phosphate-ba	sed treatment					
		Note 3:	Standard oper	ration					
		Note 4:	Operating 24/7	7					
)	CALCULATED W	ATER BALAN	NCE						
2	Cycles of Concentrat	ion	3.3	Relative to Mak	ke-up				
3			15.6	Relative to Fee	dwater				
ł									
5	Flows	percent	lb/hour	lb/day	kg/hr	kg/day	kg/s	lb/yr	kg/yr
5	Steam	100.00	6.00E+04	1.44E+06	2.72E+04	6.53E+05	7.56	5.26E+08	2.38E+08
7	Feedwater	106.86	6.41E+04	1.54E+06	2.91E+04	6.98E+05	8.08	5.62E+08	2.55E+08
3	Condensate Returns	78.60	4.72E+04	1.13E+06	2.14E+04	5.14E+05	5.94	4.13E+08	1.87E+08
)	Make-up	21.40	1.28E+04	3.08E+05	5.83E+03	1.40E+05	1.62	1.13E+08	5.10E+07
)	Blowdown	6.42	3.85E+03	9.25E+04	1.75E+03	4.20E+04	0.49	3.38E+07	1.53E+07
	Losses	14.98	8.99E+03	2.16E+05	4.08E+03	9.79E+04	1.13	7.88E+07	3.57E+07
2									
3									
ł	ESTIMATE OF W	ATER COST:							
5			Raw Wate	er Cost	+ Treatmen	t Cost		Water Lost by	
、 I			4.00	# /4000.10	1.00	# /4000.10		T	

		Raw Water Cost		+ Treatment	Cost		Water Lost by	
		1.60	\$/1000 IG	1.00	\$/1000 IG		Treatment Pro	cess
			\$/1000 usg		\$/1000 usg		15	%
			\$/m³		\$/m³			
	IG/day	USG/day	m³/day	\$/day	IG/yr	usg/yr	m³/yr	\$/yr
Make-up								
Raw Water	35382	42458	161	57	1.29E+07	1.55E+07	58702	20663
Treated Make-up	30767	36920	140	31	1.12E+07	1.35E+07	51045	11230
- Total Make-up Cost				87				31893
Losses								
Treatment Losses	4615	5538	21	7	1.68E+06	2.02E+06	7657	2695
Blowdown	9230	11076	42	26	3.37E+06	4.04E+06	15313	9568
- Flashed Steam	856	1028	4	2	3.13E+05	3.75E+05	1421	888
= Blowdown to Sewer	8374	10048	38	24	3.06E+06	3.67E+06	13893	8680
Condensate Lost	21537	25844	98	61	7.86E+06	9.43E+06	35731	22325

	A	В	С	D	Е	F	G	Н	I	J	ĸ	L	М	N	0
1															
2															
3	_	Make-up							Condensa	te Return	_				-
5	_	21 /	%						78.6	ppin Ci	_				-
6	_	5827	ka/hr						21396	ka/hr	_				-
7										- J					1
8								n							
9															
10							Fee	dwater							
11							6.5	ppm Cl					1		_
12							106.9	% ka/br				r	Losses	0/	-
14							29091	ку/п					4079	70 ka/hr	-
15													4013	Ng/11	+
16															
17						•									
18															
19															
20							_				HE	AT			
21				D	EAER	АТО	R			-	LO	AD			
22						1	1			-					-
23											<u> </u>		<mark>_</mark>		
24															-
26						I									-
27				-											
28				-	BOI	LER						Stean	n		
29												100.	J %		
30				COC	- MU	=	3.3					2722	3 kg/hr		
31				_	- FW	=	15.6								
32				-											-
34					1	1	1								-
35															-
36								Blowdo	wn						-
37								100	ppm Cl						
38								6.42	%						
39								1748	kg/hr						
40	_					<u> </u>									
41	+												+		-
43	+														┢
44															+
45	+			BOII	FR	-w		2 MASS			R۵	v			T
45	+			501					DALANO						-
40	+		Dlant	VV7 -	Mar	ufa	oturir	 ~							+
4/	_		Plant:		vian	ura	cturing	y						<u> </u>	-
48			System:	#2 Uti	lity b	oile	r								
49			Note 1:	Operati	ng w	ith so	oftened v	water							
50			Note 2:	Phosph	nate-b	based	l treatme	ent							
51			Note 3:	Standa	rd op	eratio	on								
52	Τ		Note 4:	Operati	ng 24	\$/7					T				
53							<u> </u>								

	А	В	С	D	E	F	G	H		JK
1				11		I	11		I	
2										
3			Plant:	XYZ Manufa	acturing					
4			Svstem:	#2 Utility boil	er					
5	Note 1:			Operating with s	softened water					
6	Note 2:			Phosphate-base	d treatment					
7			Note 3:	Standard operat	tion					
8			Note 4:	Operating 24/7						
9										
10		BLOWDOW	N ENERGY L	OSS ESTIMATE:						
11										
12			Fuel:	Natural Gas	Heat Value:	7.4	\$/million BTU		\$/GJ	
13			Boiler Efficier	ncy:		70	%			
14			Dearator Ter	nperature:			°C	239	°F	
15			Heat-Exchan	iger Outlet:			°C	90	°F	
16			Make-up tem	perature			°C	60	°F	
17			Flashed Stea	am:		9.3	%			
18										
19		Losses		Million BTU/day	Million BTU/yr	GJ/day	GJ/yr	\$/day	\$/yr	
20		No Recover	у	25.1	9143	26.4	9646	295	107,582	
21		- With Flash	Tank	15.3	5588	16.2	5895	180	65,748	
22		- & Heat Exc	changer	2.8	1007	2.9	1063	32	11,852	
23		Savings								
24		- With Flash	Tank	9.7	3555	10.3	3751	115	41,834	
25		- & Heat Exc	changer	12.5	4581	13.2	4833	148	53,897	
20				22.3	8136	23.5	8583	262	95,730	
21										
20										
29		ENERGILU	JSS CALC.							
31			•							
32		Natural Gas			8.2	\$/million BTU		7 807	\$/G1	
33					0.2	¢/minor Bro		1.001	φ/00	
34		FLASH TO F)/A							
35		Boiler pressu	ure		100	psia		689	kPa	
36		Enthalpy - at	pressure		296	BTU/lb		688	kJ/ka	
37		Temperature)		239	°F		115	°C	
38		Enthalpy - at	D/A tempera	ture	208	BTU/lb		483	kJ/kg	
39		Latent heat of	of vaporization	1	953	BTU/lb		2216	kJ/kg	
40		Make-up Ter	nperature		60	°F		16	°C	
41		Enthlapy of r	nake-up		28	BTU/lb		65	kJ/kg	
42		% flashed to	steam		9.3	%		9.3	%	
43		Enthalpy of f	lashed steam		1160	BTU/lb		2699	kJ/kg	
44		Energy save	d		1132	BTU/lb		1195	kJ/kg	
45										
46		HEAT EXCH	ANGER							
47		Enthalpy - H	X out		58	BTU/lb		135	kJ/kg	
48		Outlet Temp	erature		90	°F		32	°C	
49		Energy save	d		150	BTU/lb		158	kJ/kg	
50										
51										

1	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q
2									N DISCHAR	GED							
3								1007	Million BTU/	/r							
4		RAW WATE	R IN					3.06E+06	IG/vr								
5		1.29E+07	IG/yr					11852	\$/yr - Energy								-
6		20663	\$/yr					8680	\$/yr - Water								-
7								20532	\$/yr - Energy	+ Water							-
8																	-
9							90	°F									-
10																	-
11		TREAT	MENT	TREATED M	AKE-UP	60			MAKE	-UP							
12		PLA	NT	1.12E+07	IG/vr	°F			21.4	%							
13				31893	\$/yr			•	5827	kg/hr							-
14							239	°F	4581	Million BTU/	/r						-
15									53897	\$/yr - Energy							-
16												CC	NDENSATE	RETURN	LOSS	ES	_
17		WASTE ST	REAMS OU	т									78.6	%	15.0	%	-
18		1.68E+06	IG/yr							FEEDWA	TER		21396	kg/hr	4079	kg/hr	-
19										106.9	%				7.86E+06	IG/yr	
20										29091	kg/hr				22325	\$/yr - Water	r –
21												-			L		_
22		HOT WATE	R					<u> </u>				-			L		_
23	$\left \right $	5588	Million BTL	J/yr								1			I		4_
24		3.06E+06	IG/yr						DEAEF	RATOR							
25		65748	\$/yr - Energ	gy					239	°F							
26		<u>8680</u>	\$/yr - Wate	r													
27		74429	\$/yr - Ener	gy + Water			8										
28							i							HEAT	LOAD		
29							I		STORAG	E TANK							
30																	_
31							1										_
32							1										-
33															i		
34				FLASHED ST	ЕАМ		I								I		
35				3751	Million B	STU/yr	į								<u> </u>		
36				3.13E+05	IG/yr				BOI	LER					1		
37				41834	\$/yr - En	nergy	1		27223	kg/hr							
38				<u>888</u>	\$/yr - Wa	ater	8		100	psia		_			! #		_
39				42721	\$/yr - En	ergy + Wate	er		327	°F			STEAM		i		_
40							l		• • • •				100.0	%			_
41							ļ	COC	- MU =	3.3			27223	kg/hr			_
42							1		- FVV =	15.6							_
43							I										
44							İ				1						
45							l –				WN						
47	+						l			6.42	%						+
48							I			1748	ka/hr	1					+
49	+									9143	Million BTI	U/vr					+
50										3.37E+06	IG/yr	1					+
51	11					FLAS	HTANK			107582	\$/vr - Ener	av					+
52	+									9568	\$/vr - Wate	ər			-		+
53	1 1									117150	\$/yr - Ener	rqv +	Water				+
54												Ť.					+
55	11							8				1			1		+
56	11																+
57	11						FRGY A			SS RAI		יח		j –			1
51	+				501									-	<u> </u>		+
58	+					-	×××=					+			<u> </u>		+
59						Plant:	XYZ Ma	nutactur	ing								
60	[System:	#2 Utility	boiler									
61						Note 1:	Operating v	with softene	d water								1
62						Note 2	Phosphate	-based treat	ment			1					+
62						Note 3	Standard o	noration				+					+
64	+					Note 4:	Onoreting (+			<u> </u>		+
65	+					NULE 4.	Operating 2	24/1				+			<u> </u>		+
00	1				1	1	1	1			1		1	1	L		1

	А	В	С	D	E	F	G	Н		J	K			
1	1													
2			Plant:	XYZ Man	ufacturir	ng								
3		System:		#2 Utility b	ooiler									
4			Note 1:	Operating w	ith softened	water								
5			Note 2:	Phosphate-b	based treatm	ent								
6			Note 3:	Standard op	eration									
7			Note 4:	Operating 24	4/7									
8		-				1	1			1	_			
9		TREATMENT CC	STS								_			
10														
11		TREATMENT PR	ODUCTS:	mg/L	\$/kg	kg/day	\$/day	kg/yr	\$/yr					
12			to steam	10	5.00	0.3	1.36	99	497		_			
13			"	10	5.00	0.3	1.36	99	497		_			
14			to feedwater	10	5.00	0.3	1.45	106	531		_			
15			"	10	5.00	0.3	1.45	106	531		_			
16			to make-up	10	5.00	0.1	0.29	21	106		_			
17			"	10	5.00	0.1	0.29	21	106					
18							6.21		2268					
19														
20														